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Laminar flow in the entrance region of a smooth pipe 
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The entrance region has been divided into two parts, the inlet region and the filled 
region. At the end of the inlet region, the boundary layers meet a t  the pipe axis but 
the velocity profiles are not yet similar. In the filled region, adjustment of the com- 
pletely viscous profile takes place until the Poiseuille similar profile is attained at  
the end of it. The boundary-layer equations in the inlet region and the Navier-Stokes 
equations with order-of-magnitude analysis in the filled region are solved using 
fourth-degree velocity profiles. The total length of the entrance region so obtained is 
6 = x / R  Re = 0.150, whereas the boundary layers are observed to meet a t  approxi- 
mately one-quarter of the entrance length, i.e. at 6 = 0-036. Experiments reported 
in the paper corroborate the analytical results. 

1. Introduction 
Investigation of fluid flow in the entrance region of a pipe or a duct is of considerable 

practical significance and, not surprisingly, there exist a large number of references 
in the literature on this topic, especially for incompressible laminar flow. Historically, 
the person first to analyse the entrance flow through a smooth pipe was Schiller 
(1922; see Schlichting 1968, p. 231), who used integral analysis of a parabolic velocity 
profile in the boundary layer. The velocity profile chosen was a modification of the 
Poiseuille solution in the sense that the pipe radius was replaced by the boundary- 
layer thickness. In other words, when the boundary-layer thickness 6 became equal 
to the pipe radius R, the analysis predicted automatic establishment of fully developed 
flow. This apparently gave rise to the idea that the attainment of a fully developed 
profile is synonymous with S being equal to R, a notion which has been regarded as 
suspect qualitatively (Goldstein 1938, p. 299; Rosenhead 1963, p. 440). Schiller’s 
integral solution on the basis of a parabolic profile is inherently questionable, as such 
a profile does not ensure attainment of free-stream conditions at the edge of the 
boundary Iayer by not permitting the second derivative of the velocity to be zero, 
which is an essential boundary condition for flow with a pressure gradient. 

Later studies, such as that of Schlichting (1968, p. 176), have been primarily 
oriented towards the investigation of the development of the velocity profile. 
Schlichting’s procedure for a rectangular duct consists of matching a downstream 
boundary-layer solution with a velocity profile which deviates increasingly from the 
Poiseuille profile in the upstream direction. This method of perturbing a Poiseuille 
profile was first adopted by Boussinesq (1891; see Van Dyke 1970). The matching is 
supposed to take place where the boundary-layer and the deformed-profile solutions 
are valid simultaneously. This procedure of Schlichting has been re-examined by Van 
Dyke (1970) and Wilson (1971), whose major corrections to Schlichting’s method 
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consist of proposing second-order stream functions to account for the displacement 
thickness in the boundary-layer region. 

In  general four different methods have been applied to solve the entrance flow. 
Van Dyke (1970) lists these methods as (i) numerical finite-difference solution of the 
boundary-layer equations, (ii) linearization of the inertia terms, (iii) integral methods 
and (iv) series expansion, and comments on the assumptions common to the last two 
methods in so far as accounting for the displacement thickness is concerned. Fargie 
& Martin (1971), on the other hand, give a relatively exhaustive review, including 
classification of the most important work by these different methods. More recently 
Sparrow & Anderson ( 1  977) have considered the effects of the inlet profile on the 
development length in a parallel-plate channel by treating the flow fields upstream 
and downstream of the entry simultaneously. 

In  such analysis, for example that by Schlichting, though the entrance region has 
been tacitly divided into two parts, no quantitative value seems to have been indicated 
for the distance a t  which the boundary layers meet a t  the duct axis. Furthermore, the 
recommendations of Van Dyke and Wilson have not been applied to axisymmetric 
pipe flow. In  practice, one often comes across flow in a short pipe, such as a pipe 
leading to a diffuser, a nozzle or a connecting piece, where a knowledge of the develop- 
ment of the boundary-layer thickness is of considerable importance. 

In  a recent experimental investigation wherein velocity profiles in various potential 
and viscous zones a t  the entrance to a diffuser were created by passing the flow through 
pipes of various length-to-diameter ratios, the present authors found that the laminar 
boundary layers meet a t  the pipe axis much earlier than the attainment of a fully 
developed profile. The existing literature did not seem to indicate quantitatively the 
location of such a meeting of the boundary layers. 

This observation motivated the present authors to re-examine analytically the flow 
in the pipe entrance, and verify salient results by experiments. 

2. Physical model 
I n  this paper, an analysis is presented to estimate for a smooth circular pipe the 

growth of the boundary layer under the accelerating core, and the subsequent adjust- 
ment of the completely viscous velocity profile to  the Poiseuille solution marking the 
end of the entrance region. For convenience the boundary-layer region is identified 
as the ‘inlet region’ and the fully viscous region as the ‘filled region’, after Shingo 
(1966). The physical model is illustrated in figure 1. 

The existence of the inlet and the filled regions was verified experimentally a t  
Reynolds numbers of 1875, 2500 and 3250. 

3. Governing equations 
Boundary-layer equations are valid in the inlet region while the full Navier-Stokes 

equations have to be applied to the flow in the filled region. However, since the length 
of the filled region was found experimentally by the present authors to be very large 
compared with the pipe radius, in contrast to White’s (1974) implication of a short 
length, order-of-magnitude analysis of the Navier-Stokes equations is considered 
permissible. It is observed that in such an analysis the equations in the filled region are 
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FIGURE 1. Physical model of entrance region. 
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FIGURE 1. Physical model of entrance region. 

similar in form to those in the boundary layer, although the ' free-stream ' (pipe centre) 
conditions in the two regions differ. 

Apart from the inclusion of the filled region, the present analysis, which uses integral 
methods, has the following aims. 

(i) To ensure smoother attainment of the free-stream condition by requiring the 
second derivative of the velocity profile a t  the edge of the boundary layer to be zero, 
unlike the case of Schiller. The prediction of too low an entrance length by McComas 
(1967), which has been attributed by Fargie & Martin (1971) to omission of viscous 
effects, resulted from a Schiller-like choice of the velocity profile. 

(ii) To account for the viscous effects on mass flow by considering the area-averaged 
continuity equation at a section in terms of the displacement thickness, and then 
solving the differentiated displacement-thickness equation simultaneously with the 
momentum equation. 

(iii) To refer the development length to the average velocity rather than to the centre- 
line value since, with the introduction of the filled region, the centre-line velocity 
cannot be assessed independently, say by Bernoulli's equation, as in a pure boundary 
layer model. 

With the origin of the co-ordinate system located a t  the pipe centre at the inlet, 
the appropriate conservation equations are 

a(ru)/ax + a(rv)/ar = 0 (mass), (1) 

ap/ar = 0 

The boundary conditions are as follows: 
(a) Inlet region 

(i)u = v = 0 at  r = R (no slip at  the 

for O < r , < R - S  
(ii) u = Um(x), 
(iii) aular = 0 

wall). 

(free stream), 

where V,(x) is the local potential core velocity. 

(iv) a2u/ar2 = 0 at 0 6 r G R-8 , .  
to ensure an accurate approach to the free stream in the presence of a pressure gradient. 
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which is the reduced form of the boundary-layer equation a t  the wall. Using Ber- 
noulli's equation for flow in the potential core, condition (v) is modified to  

( b )  Filled region 
(i) u = v = 0 a t  r = R 
(ii) i?u 'ar = 0 a t  r = 0 
(iii) At the pipe axis, though there is no potential core, the flow is assumed parallel 

(no slip at the wall). 
(condition of symmetry of the velocity profile). 

and the velocity there is defined as 1;. Thus the momentum equation a t  r = 0 is 

Pohlhausen's pressure-gradient parameter is defined as 

in the inlet region, 
A =  

R2 
in the filled region. 

(4) 

An addit,ional parameter (ef. Shingo 1966) is defined for the filled region as 

r r7, ar2 r=O' 

By expa,nding in a Taylor series, i t  is noted that 

[%(~3],, = 2[E]r=o. 
and use of t,he definitions of h and I? makes it possible to write the pressure-gradient 
term in boundary condition (iii) for the filled region as 

The pressure gmdient in t,he inlet region can be expressed in a similar manner as 

- A. 
6 2  d p  

purr, ax 
_- - - (7) 

3.1. Integral form of the governing equations 

The boundary-layer equations in the inlet region are integrated according to the 
von K&rm&n- Pohlhausen scheme. The (x, r )  co-ordinate system is first changed to  an 
(x, y) system, as shown in figure 1. 

As stated earlier, the reduced equations in the filled region are also of boundary- 
layer type; hence a similar integration is carried out between the limits y = 0 and 
y = R, in contrast to y = 0 and y = S(x) in the inlet region. 

I n  order to convey the generality of the integrated form of the conservation equa- 
tions, we shall let 6(x), l: and r, respectively, be equal to R in the filled region and 
take r& = rc, and I' = 0 in the inlet region. 
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The transverse velocity component v is easily evaluated from the continuity 
equation, and is substituted into the momentum equation, which when integrated 
has the form 

Note that, although [a2~/ay2]v=s can be taken as zero in the inlet region, its value is 
apriori unknown in the filled region. 

We now define the displacement and momentum thicknesses as 

Use of the definitions of the pressure-gradient parameters and skin-friction co- 
efficient allows (9) to be written in the form 

where C, = r,/&pUE. Note that in (10) we have written U, in place of U, only to convey 
the generalization. In  its present form, (10) applies to the filled region, where the 
limits of integration for S* and S** are R in lieu of S(x), and U, = U,. For the inlet 
region (10) would have r = 0 and U, = U , .  

The conservation of mass is expressed in terms of the displacement thickness by 

2nRUm 8* z= nR2(U, - Uo), 

which leads to Uo/Um = 1 - 2 S * / R ,  (11) 

where Uo is the average velocity. We shall use (1  1) to evaluate the correspondence 
between the average and core velocities. 

In  order to solve (lo), it  is necessary to assume a suitable velocity profile in the 
boundary layer of the inlet region ( A  =+= 0, I? = 0) and a totally viscous profile in the 
filled region ( A  =I= 0, I? =+= 0). The independent variable y and the dependent variable 
u(x, y )  are non-dimensionalized as 

in the inlet region, 
11 = {Y/S 

y / R  in the filled region, 

Ti = 4x3 Y)/UC(4. 

I n  all cases U,(x) should be replaced by UJx) in the inlet region. 
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To account for the pressure gradient in both the inlet and the filled region, a fourth- 
degree profile whose general form is 

d 

7 and ii as follows. 
(a) Inlet region 

(i) 
(ii) 

(iii) 

(iv) 

(v) 

(i) 

(b )  Filled region 

(ii) 

(iii) 

(id 

(v) 

z = 2 Ak(h, r)Tk (12) 
k=O 

is assumed in each region. 
The five boundary conditions already stated are expressed in the new variables 

These boundary conditions on (1  1) and (12) are satisfied by a velocity profile of the 

z = F(7)  + A, G(7) - rlK(7), 

~ ( 7 )  = 27 - 273 + 74, 

Q(7) = Q(7 - 3v2 + 3q3 - v4), 
~ ( 7 )  = (7 - ~ 7 2  + 1073 - !74), 

A, = 6 ( ~  - 2s1)/(6 + s,), rl = r / (6  + a,), s, = S/R.  

(15) 

(16) 

form 

1 where 

8, = 1 in the filled region; hence rl = +I? there. I?, is zero in the inlet region and the 
resulting profile is the same as that of Pohlhausen. 

= - 5 the velocity profile reduces 
to the simple parabolic form 

of fully developed incompressible flow. This signifies that the far-downstream asymp- 
totic values (fully developed) of A, and I?, are - 

The displacement and momentum thicknesses, using the polynomial (15), are 

It should be noted that for the A, = - and 

5 = 27-72 (17) 

and - 5, respectively. 

and 
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Substitution of 6* from (18) into (1 1) gives the relationship between the average and 
centre-line velocities as 

which restates that t; should be read as rT, and rl = 0 in the inlet region. 
Schlichting's (1968, p. 176) procedure was to use a continuity relation of the form 

of (20) with the right-hand side expressed as a series. This has been objected to by 
Van Dyke and Wilson because the resulting series for the potential-core velocity is 
not adequate to account for the boundary-layer effects. We propose to comply with 
the later suggestions by deriving a differential continuity equation from (1 1) and 
solving it simultaneously with the momentum equation (10)' for 6 and A in the inlet 
region and for h and r in the filled region. This will not require approximating the core 
velocity by an algebraic series. 

The differentiated form of (1  1) is 

( 1 - 2 6 ~ ) - ~ - 2 ~ c -  d C  d6,* = 0, 
dx  dx 

which by rearrangement and use of the definition of h may be written for the inlet 
region as 

Substitution of S = R and r', E LL make the equation applicable for the filled region. 
The wall skin-friction coefficient C, can be evaluated from the velocity profile (15) as 

(21) d6,*/dx = 8( 1 - 26:) vh/a21',. 

which results in (23) 

where Re = Q, Dlv .  

3.2. Solution of the governing equation 

The expressions (18), (19) and (23) for S*, a** and C, can now be substituted into the 
integrated momentum equation (10) and the differentiated continuity (21) to yield a 
pair of ordinary differential equations for Sl and A, in the inlet region and for A, and 
rl in the filled region. 

In  the inlet region rl = 0,  and the resulting simultaneous differential equations are 

(24) 
3-  (G/W [a1 4 ( A l ,  61) - 4 WL &,)I 
dE - 62,F,(hl, 81) 

and 

where f = x / R  Re. 
In  the filled region 6, = 1, and the corresponding equations are 

and 
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The functions 4 are defined in the appendix. The above two pairs of equations, (24) 
and (25), and (26) and (27), are solved successively for the inlet and the filled regions 
by the fourth-order Runge-Kutta method. 

The boundary layer is assumed to grow from the inlet of the pipe, requiring S, = 0 
a t  5 = 0. This condition further requires that A = 0 a t  E = 0, so that (25) is also 
satisfied a t  the inlet of the pipe. For numerical solution, starting values of E = 
S, = 2 x and A, = 0-015 with increments in 5 of 10-8 have been found to be 
suitable and to be invariant under small changes in the initial values of 8, and A,. 

The solution for the inlet region is continued till 8, becomes equal to 1, i.e. up to 
the point where the boundary layers meet a t  the pipe centre. This takes place at  
5 = 0.036, where A, = 2.7270. 

The solution for the filled region has been obtained with an initial value of A, equal 
to the value at  the end of the inlet region, 8, = 1.0. Here the value of I?, is still zero 
and hence this is the starting value for the filled region. 

It was pointed out that the fully developed profile is reached where A, = - 1+- and 
I?, = - $. Ideally, therefore, the end of the filled region should be marked by the attain- 
ment of these values of A, and I?,. As would be expected, however, the approach to 
these values in the numerical calculation was extremely gradual and the practical 
limit of the filled region was chosen as the point where the average velocity corres- 
ponded to 99 yo of the fully developed value. The 99 yo limit was reached at = 0.150, 
where the numerically attained values of A, and I?, were - 1.6831 and - 0.2839, 
deviating respectively by less than 2 and 0.5 % from their exact values of - 1.7143 
(A, = --A+) and -0.2857 (I?, = -5). The velocity profile, shear stress and pressure 
at  a point were then evaluated using the estimated values of a,, A, and I?,. 

3.3. Pressure drop 

In  the inlet region there always exists a potential core; hence the pressure drop is 
estimated from Bernoulli’s equation 

In the filled region, in which there is no potential core, stepwise integration of the 
pressure gradient equation (6), using a Taylor series, is carried out. 

In non-dimensional form the equation for 8, = 1 is 

dp*/d[  = -$(12+7A1-84r,) U,/Uo, (29) 

where p *  = p/$pU; .  The beginning of the filled region rl = 0 also belongs to the 
inlet region, and the initial value of dp*/dE is 

dp*/dE = - $(12+7h,) q/uo. (30) 

The calculated values of 6, the velocity ratio Um/Uo or UJU,, the skin-friction co- 
efficients C, and C,, (=  r , / i p U i ) ,  the non-dimensional parameters S,, I?, and A, and 
the pressure drop along the pipe in t,he inlet and filled regions are given in tables 1 
and 2 respectively. The pressure-drop values estimated by Schiller and by Atkinson 
& Goldstein (see Goldstein 1938) are also given for comparison. 
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4. Experiments 
Experimental verification of the existence of inlet and filled regions and the measure- 

ment of the associated parameters were carried out in laminar incompressible flow of 
air through a 30 mm I.D. smooth aluminium pipe at three Reynolds numbers (1875, 
2500 and 3250). The uniform velocity at  entry was created by preceding the pipe with 
a short smooth bellmouth at  the end of a large settling chamber. Fine wire-mesh 
screens were put inside the settling chamber, the area of which was more than 100 
times larger than the pipe cross-section, resulting in near-stagnation conditions in the 
chamber. The connexion between the short bellmouth of the settling chamber and 
the aluminium pipe was made of a resin bonding (Araldite) and hand polished for 
smoothness. The inside of the aluminium pipe was also polished with grinding paste. 
The entire set-up was held rigidly, and with these precautions the flow in the entrance 
region, according to pressure-gradient values, was laminar even when the Reynolds 
number was marginally higher (2500 or 3250) than the standard or fully developed 
critical value. 

The velocity field traverse was carried out by means of a 2 mm microprobe flattened 
a t  the tip, in conjunction with an Askania micromanometer of sensitivity 0.01 mm Hg. 
The accuracy of measurements was estimated to be better than 95O1~ by making 
calibration measurements in the fully developed flow region of the pipe. 

5. Results and discussions 
The laminar incompressible flow in the entrance region of a smooth pipe has been 

analysed on the basis of the existence of two distinct regions, the inlet and filled regions. 
Fourth-degree velocity profiles with pressure-gradient parameters A in the inlet 

region, and h and I? in the filled region were used to solve simultaneously the continuity 
and momentum equations by Pohlhausen’s integral method, and the variation of 6, 
A and I? was predicted. The continuity equation used for numerical solution was in 
the form of a differential equation for the displacement thickness; thus there was no 
necessity to approximate the core velocity by an algebraic series or other form. 

The acceleration of the potential core is reflected in the positive and increasing value 
of A, in the inlet region, and such acceleration is destroyed in the filled region by the 
existence of a negative rl; the numerically calculated terminal values of A,  and I?, at 
the end of the entrance region deviate from the exact values by less than 2 and 0.5 Oi0, 

respectively, and lend credibility to  the accuracy of the solution. The exact variation 
of A, and I?, is tabulated in tables 1 and 2 and is also given in figures 2 and 3. The end 
of the entrance length corresponds to the attainment of 99 Oi0 of the average velocity 
of the Poiseuille flow. 

The development of the boundary layer in the inlet region, which was estimated 
numerically and verified experimentally, is shown in figure 4. The end of the inlet 
region occurs when 6 becomes equal to R ,  at the location 5 = x / ( R  Re) = 0,036. The 
boundary-layer thickness obtained from Schiller’s profile was also calculated and is 
presented in the same figure for comparison. 

The numerically estimated values of the wall skin-friction coefficients C,, based on 
the centre-line velocity, and C,, based on the average velocity, were attained almost 
exactly (figure 5); as tC, Re = 1.0 and &C,, Re = 4.0 at the end of the entrance region 
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FIGURE 3. Pressure-gradient parameters in the filled region. 
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FIGURE 4. Boundary-layer development in the inlet region. -, 
theory; -0-, experiment; - --- , Schiller's theory. 

FIGURE 2. Pressure-gradient parameter A, in the inlet region. 
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(g = 0.150). Such a value of the entrance length is comparable with the results of 
Campbell & Slattery (1963, = 0-136)) Atkinson & Goldstein (see Goldstein, 1938, 
[ = 0-130), Hornbeck (1964, 5 = 0.114) and Gupta (1977), who followed the method 
of Campbell & Slattery, except €or a modification in evaluating the shear stress, and 
obtained practically the same results as Campbell & Slattery. Similarly, the present 
value of = 0.15 is in good agreement with the measurements of Fargie & Martin 
(1971), who indicated attainment of a fully developed centre-line velocity a t  about 
[ = 0.13, for 760 < Re < 1512. As the present results are based on boundary-layer 
analysis, they are unlikely to be accurate for low Reynolds numbers, say below 500. 

The equations in both the inlet and the filled region are of boundary-layer form; 
thus it would be expected that the axial pressure gradient estimated with or without 
recognition of the existence of the two separate regions should be in good agreement. 
This is noted in tables 1 and 2 and in figure 6, where experimental results from the 
present investigation are also indicated. It may be noted that the present estimated 
value of the pressure a t  the end of the entrance region is closer to the Poiseuille value 
than any hitherto published. 

The calculated values of the velocity profiles a t  different axial locations also agree 
well with experimental results briefly reported elsewhere (Mohanty & Asthana 1977), 
but are not presented here for brevity, the primary objective of the paper being to 
make a quantitative estimation of the lengths of the inlet and filled regions, which 
together constitute the entrance length. 

FIGURE 5 .  Skin-friction coefficients in the entrance region. - , present investigation; ---, 
, Schiller’s theory. C, = r,J&dJz, C,, = r,/$pU:, Re = 2U0 R/v,  uo = averagevelocity. 
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FIQURE 6. Entrance-region pressure drop. -.-, Poiseuille flow; ---, Schiller (1922); A,  Langhaar 
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